Show simple item record

dc.contributor.authorTabatabaei, S. Mojtaba
dc.contributor.authorSánchez, David
dc.contributor.authorLevy-Yeyati Mizrahi, Alfredo 
dc.contributor.authorSánchez Rodrigo, Rafael 
dc.contributor.otherUAM. Departamento de Física Teórica de la Materia Condensadaes_ES
dc.date.accessioned2023-01-31T09:01:56Z
dc.date.available2023-01-31T09:01:56Z
dc.date.issued2022-09-15
dc.identifier.citationPhysical Review B 106.11 (2022): 115419es_ES
dc.identifier.issn2469-9950 (print)es_ES
dc.identifier.issn2469-9969 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/706078
dc.description.abstractWe discuss a quantum thermal machine that generates power from a thermally driven double quantum dot coupled to normal and superconducting reservoirs. Energy exchange between the dots is mediated by electron-electron interactions. We can distinguish three main mechanisms within the device operation modes. In the Andreev tunneling regime, energy flows in the presence of coherent superposition of zero- and two-particle states. Despite the intrinsic electron-hole symmetry of Andreev processes, we find that the heat engine efficiency increases with increasing coupling to the superconducting reservoir. The second mechanism occurs in the regime of quasiparticle transport. Here we obtain large efficiencies due to the presence of the superconducting gap and the strong energy dependence of the electronic density of states around the gap edges. Finally, in the third regime there exists a competition between Andreev processes and quasiparticle tunneling. Altogether, our results emphasize the importance of both pair tunneling and structured band spectrum for an accurate characterization of the heat engine properties in normal-superconducting coupled dot systemses_ES
dc.format.extent13 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relation.ispartofPhysical Review B - Condensed Matter and Materials Physicses_ES
dc.rights© 2022 American Physical Societyes_ES
dc.subject.otherAndreev Processes_ES
dc.subject.otherDevice Operationses_ES
dc.subject.otherDouble Quantum Dotses_ES
dc.subject.otherElectron-Electron-Interactionses_ES
dc.subject.otherEnergy Exchangeses_ES
dc.subject.otherQuantum Heat Engineses_ES
dc.subject.otherThermal Machineses_ES
dc.subject.otherThermally Drivenes_ES
dc.titleNonlocal quantum heat engines made of hybrid superconducting deviceses_ES
dc.typearticlees_ES
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.106.115419es_ES
dc.identifier.doi10.1103/PhysRevB.106.115419es_ES
dc.identifier.publicationfirstpage115419-1es_ES
dc.identifier.publicationissue11es_ES
dc.identifier.publicationlastpage115419-13es_ES
dc.identifier.publicationvolume106es_ES
dc.relation.projectIDGobierno de España. PID2019-110125GB-I00es_ES
dc.relation.projectIDGobierno de España. PID2020-117347GB-I00es_ES
dc.relation.projectIDGobierno de España. PID2020-117671GB-I00es_ES
dc.relation.projectIDGobierno de España. CEX2018-000805-Mes_ES
dc.relation.projectIDGobierno de España. MDM2017-0711es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsopenAccesses_ES
dc.facultadUAMFacultad de Cienciases_ES
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)es_ES
dc.institutoUAMInstituto Universitario de Ciencia de Materiales Nicolás Cabrera (INC)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record