UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Semantic-aware scene recognition

Author
López Cifuentes, Alejandrountranslated; Escudero Viñolo, Marcosuntranslated; Bescos Cano, Jesúsuntranslated; García Martín, Álvarountranslated
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
Elsevier
Date
2020-06-01
Citation
10.1016/j.patcog.2020.107256
López-Cifuentes, A.; Escudero-Viñolo, M.; Bescós, J.; García-Martín, Á. (2020) Semantic-aware scene recognition, 152, 107256.
 
 
 
ISSN
0031-3203
DOI
10.1016/j.patcog.2020.107256
Funded by
This study has been partially supported by the Spanish Government through its TEC2017-88169-R MobiNetVideo project
Project
Gobierno de España. TEC2017-88169-R
Editor's Version
https://doi.org/10.1016/j.patcog.2020.107256
Subjects
Convolutional neural networks; Deep learning; Scene recognition; Semantic segmentation; Telecomunicaciones
URI
http://hdl.handle.net/10486/706166
Rights
© 2020 Elsevier Ltd.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

Scene recognition is currently one of the top-challenging research fields in computer vision. This may be due to the ambiguity between classes: images of several scene classes may share similar objects, which causes confusion among them. The problem is aggravated when images of a particular scene class are notably different. Convolutional Neural Networks (CNNs) have significantly boosted performance in scene recognition, albeit it is still far below from other recognition tasks (e.g., object or image recognition). In this paper, we describe a novel approach for scene recognition based on an end-to-end multi-modal CNN that combines image and context information by means of an attention module. Context information, in the shape of a semantic segmentation, is used to gate features extracted from the RGB image by leveraging on information encoded in the semantic representation: the set of scene objects and stuff, and their relative locations. This gating process reinforces the learning of indicative scene content and enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. Experimental results on three publicly available datasets show that the proposed approach outperforms every other state-of-the-art method while significantly reducing the number of network parameters. All the code and data used along this paper is available at: https://github.com/vpulab/Semantic-Aware-Scene-Recognition
Show full item record

Files in this item

Thumbnail
Name
semantic_lopez-cifuentes_PR_2020_pre.pdf
Size
6.969Mb
Format
PDF

Refworks Export

Google™ Scholar:López Cifuentes, Alejandro - Escudero Viñolo, Marcos - Bescos Cano, Jesús - García Martín, Álvaro

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16828]

Related items

Showing items related by title, author, creator and subject.

  • Semantic-driven multi-camera pedestrian detection 

    López Cifuentes, AlejandroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; Carballeira López, PabloAutoridad UAM
    2022-05-01
  • Automatic semantic parsing of the ground-plane in scenarios recorded with multiple moving cameras 

    López Cifuentes, AlejandroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Bescos Cano, JesúsAutoridad UAM
    2018-08-17
  • Towards automatic waste containers management in cities via computer vision: containers localization and geo-positioning in city maps 

    Moral De Eusebio, PaulaAutoridad UAM; García Martín, ÁlvaroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Martínez Sánchez, José MaríaAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; Peñuela, Jesús; Martínez, Juan Carlos; Alvis, Gonzalo
    2022-08-16
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad