Optimal quantum reservoir computing for the noisy intermediate-scale quantum era
Entidad
UAM. Departamento de QuímicaEditor
American Physical SocietyFecha de edición
2022-10-13Cita
10.1103/PhysRevE.106.L043301
Physical Review E 106.4 (2022): L043301
ISSN
2470-0045 (print); 2470-0053 (online)DOI
10.1103/PhysRevE.106.L043301Proyecto
Gobierno de España. PGC2018-093854-B-I00; Gobierno de España. CEX2019-000904-S; info:eu-repo/grantAgreement/EC/H2020/734557/EU//TraXVersión del editor
https://doi.org/10.1103/PhysRevE.106.L043301Materias
Error Rate; Fault-Tolerant; Machine Learning Algorithms; Quanta Computers; Quantum State; Reservoir Computing; Simple++; State Complexity; QuímicaDerechos
© 2022 American Physical SocietyResumen
Universal fault-tolerant quantum computers require millions of qubits with low error rates. Since this technology is years ahead, noisy intermediate-scale quantum (NISQ) computation is receiving tremendous interest. In this setup, quantum reservoir computing is a relevant machine learning algorithm. Its simplicity of training and implementation allows to perform challenging computations on today's available machines. In this Letter, we provide a criterion to select optimal quantum reservoirs, requiring few and simple gates. Our findings demonstrate that they render better results than other commonly used models with significantly less gates and also provide insight on the theoretical gap between quantum reservoir computing and the theory of quantum states' complexity
Lista de ficheros
Google Scholar:Domingo Colomer, Laia
-
Carlo, G.
-
Borondo, Florentino
Lista de colecciones del ítem
Registros relacionados
Mostrando ítems relacionados por título, autor, creador y materia.