DeepZipper: A novel deep-learning architecture for lensed supernovae identification
Entity
UAM. Departamento de Física TeóricaPublisher
American Astronomical SocietyDate
2022-03-01Citation
10.3847/1538-4357/ac5178
Astrophysical Journal 927.1 (2022): 109
ISSN
0004-637X (print); 1538-4357 (online)DOI
10.3847/1538-4357/ac5178Project
Gobierno de España. ESP2017-89838; Gobierno de España. PGC2018-094773; Gobierno de España. PGC2018-102021; Gobierno de España. SEV-2016-0588; Gobierno de España. SEV-2016-0597; Gobierno de España. MDM-2015-0509; info:eu-repo/grantAgreement/EC/FP7/240672/EU//COGS; info:eu-repo/grantAgreement/EC/FP7/291329/EU//TESTDE; info:eu-repo/grantAgreement/EC/FP7/306478/EU//COSMICDAWNEditor's Version
https://doi.org/10.3847/1538-4357/ac5178Subjects
Lens; Quasars; Galaxies; FísicaNote
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMRights
© 2022 The Author(s)Abstract
Large-scale astronomical surveys have the potential to capture data on large numbers of strongly gravitationally lensed supernovae (LSNe). To facilitate timely analysis and spectroscopic follow-up before the supernova fades, an LSN needs to be identified soon after it begins. To quickly identify LSNe in optical survey data sets, we designed ZipperNet, a multibranch deep neural network that combines convolutional layers (traditionally used for images) with long short-term memory layers (traditionally used for time series). We tested ZipperNet on the task of classifying objects from four categories - no lens, galaxy-galaxy lens, lensed Type-Ia supernova, lensed core-collapse supernova - within high-fidelity simulations of three cosmic survey data sets: the Dark Energy Survey, Rubin Observatory's Legacy Survey of Space and Time (LSST), and a Dark Energy Spectroscopic Instrument (DESI) imaging survey. Among our results, we find that for the LSST-like data set, ZipperNet classifies LSNe with a receiver operating characteristic area under the curve of 0.97, predicts the spectroscopic type of the lensed supernovae with 79% accuracy, and demonstrates similarly high performance for LSNe 1-2 epochs after first detection. We anticipate that a model like ZipperNet, which simultaneously incorporates spatial and temporal information, can play a significant role in the rapid identification of lensed transient systems in cosmic survey experiments. © 2022. The Author(s). Published by the American Astronomical Society
Files in this item
Google Scholar:Morgan, R.
-
García-Bellido Capdevila, Juan
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign. II. New quasar lenses from double component fitting
Anguita, T.; Schechter, P. L.; Kuropatkin, N.; Morgan, N. D.; Ostrovski, F.; Abramson, L. E.; Agnello, A.; Apostolovski, Y.; Fassnacht, C. D.; Hsueh, J. H.; Motta, V.; Rojas, K.; Rusu, C. E.; Treu, T.; Williams, P.; Auger, M.; Buckley-Geer, E.; Lin, H.; McMahon, R. G.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; De Vicente, J.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Flaugher, B.; García-Bellido Capdevila, Juan; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Hartley, W. G.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Lima, M.; Maia, M. A. G.; Miquel, R.; Plazas, A. A.; Sánchez, E.; Scarpine, V.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.
2018-08-09