UAM | UAM_Biblioteca | Buscador único | Portal de Producción Científica | Repositorio de Datos de Investigación UAM
Biblos-e Archivo
    • español
    • English
  • español 
    • español
    • English
  • Identificarse
JavaScript is disabled for your browser. Some features of this site may not work without it.

Buscar en Biblos-e Archivo

Búsqueda avanzada

Listar

Todo Biblos-e ArchivoComunidades y coleccionesPor fecha de publicaciónAutoresTítulosMateriasFacultadesEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasFacultades

Mi cuenta

IdentificarseRegistro

Estadísticas

Ver Estadísticas de uso

Ayuda

Guía sobre el repositorio de la UAMQuiero depositar mi trabajoPreguntas frecuentes

UAM_Biblioteca

Ver ítem 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • Ver ítem
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • Ver ítem

DeepZipper: A novel deep-learning architecture for lensed supernovae identification

Autor (es)
Morgan, R.; García-Bellido Capdevila, JuanAutoridad UAM
Entidad
UAM. Departamento de Física Teórica
Editor
American Astronomical Society
Fecha de edición
2022-03-01
Cita
10.3847/1538-4357/ac5178
Astrophysical Journal 927.1 (2022): 109
 
 
 
ISSN
0004-637X (print); 1538-4357 (online)
DOI
10.3847/1538-4357/ac5178
Proyecto
Gobierno de España. ESP2017-89838; Gobierno de España. PGC2018-094773; Gobierno de España. PGC2018-102021; Gobierno de España. SEV-2016-0588; Gobierno de España. SEV-2016-0597; Gobierno de España. MDM-2015-0509; info:eu-repo/grantAgreement/EC/FP7/240672/EU//COGS; info:eu-repo/grantAgreement/EC/FP7/291329/EU//TESTDE; info:eu-repo/grantAgreement/EC/FP7/306478/EU//COSMICDAWN
Versión del editor
https://doi.org/10.3847/1538-4357/ac5178
Materias
Lens; Quasars; Galaxies; Física
URI
http://hdl.handle.net/10486/706412
Nota
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM
Derechos
© 2022 The Author(s)

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Resumen

Large-scale astronomical surveys have the potential to capture data on large numbers of strongly gravitationally lensed supernovae (LSNe). To facilitate timely analysis and spectroscopic follow-up before the supernova fades, an LSN needs to be identified soon after it begins. To quickly identify LSNe in optical survey data sets, we designed ZipperNet, a multibranch deep neural network that combines convolutional layers (traditionally used for images) with long short-term memory layers (traditionally used for time series). We tested ZipperNet on the task of classifying objects from four categories - no lens, galaxy-galaxy lens, lensed Type-Ia supernova, lensed core-collapse supernova - within high-fidelity simulations of three cosmic survey data sets: the Dark Energy Survey, Rubin Observatory's Legacy Survey of Space and Time (LSST), and a Dark Energy Spectroscopic Instrument (DESI) imaging survey. Among our results, we find that for the LSST-like data set, ZipperNet classifies LSNe with a receiver operating characteristic area under the curve of 0.97, predicts the spectroscopic type of the lensed supernovae with 79% accuracy, and demonstrates similarly high performance for LSNe 1-2 epochs after first detection. We anticipate that a model like ZipperNet, which simultaneously incorporates spatial and temporal information, can play a significant role in the rapid identification of lensed transient systems in cosmic survey experiments. © 2022. The Author(s). Published by the American Astronomical Society
Mostrar el registro completo del ítem

Lista de ficheros

Thumbnail
Nombre
9064995.pdf
Tamaño
3.730Mb
Formato
PDF

Refworks Export

Google™ Scholar:Morgan, R. - García-Bellido Capdevila, Juan

Lista de colecciones del ítem

  • Producción científica en acceso abierto de la UAM [17129]

Registros relacionados

Mostrando ítems relacionados por título, autor, creador y materia.

  • The Dark Energy Survey Supernova Program results: Type Ia Supernova brightness correlates with host galaxy dust 

    Meldorf, C.; García-Bellido Capdevila, JuanAutoridad UAM; DES Collaboration
    2022-10-26
  • The Dark Energy Survey supernova program: cosmological biases from supernova photometric classification 

    Vincenzi, M.; García-Bellido Capdevila, JuanAutoridad UAM; DES Collaboration
    2022-06-03
  • Expediting DECam multimessenger counterpart searches with convolutional neural networks 

    Shandonay, A.; Morgan, R.; Bechtol, K.; Bom, C. R.; Nord, B.; Garcia, A.; Henghes, B.; Herner, K.; Tabbutt, M.; Palmese, A.; Santana-Silva, L.; Soares-Santos, M.; Gill, M. S.S.; García-Bellido Capdevila, JuanAutoridad UAM
    2022-01-24
Todos los documentos de Biblos-e Archivo están protegidos por derechos de autor. Algunos derechos reservados.
Universidad Autónoma de Madrid. Biblioteca
Contacto | Sugerencias
Estamos enFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

Todos los documentos de Biblos-e Archivo están protegidos por derechos de autor. Algunos derechos reservados.
Universidad Autónoma de Madrid. Biblioteca
Contacto | Sugerencias
Estamos enFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad