dc.contributor.author | Morgan, R. | |
dc.contributor.author | García-Bellido Capdevila, Juan | |
dc.contributor.other | UAM. Departamento de Física Teórica | es_ES |
dc.date.accessioned | 2023-02-17T12:13:52Z | |
dc.date.available | 2023-02-17T12:13:52Z | |
dc.date.issued | 2022-03-01 | |
dc.identifier.citation | Astrophysical Journal 927.1 (2022): 109 | es_ES |
dc.identifier.issn | 0004-637X (print) | es_ES |
dc.identifier.issn | 1538-4357 (online) | es_ES |
dc.identifier.uri | http://hdl.handle.net/10486/706412 | |
dc.description | Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM | es_ES |
dc.description.abstract | Large-scale astronomical surveys have the potential to capture data on large numbers of strongly gravitationally lensed supernovae (LSNe). To facilitate timely analysis and spectroscopic follow-up before the supernova fades, an LSN needs to be identified soon after it begins. To quickly identify LSNe in optical survey data sets, we designed ZipperNet, a multibranch deep neural network that combines convolutional layers (traditionally used for images) with long short-term memory layers (traditionally used for time series). We tested ZipperNet on the task of classifying objects from four categories - no lens, galaxy-galaxy lens, lensed Type-Ia supernova, lensed core-collapse supernova - within high-fidelity simulations of three cosmic survey data sets: the Dark Energy Survey, Rubin Observatory's Legacy Survey of Space and Time (LSST), and a Dark Energy Spectroscopic Instrument (DESI) imaging survey. Among our results, we find that for the LSST-like data set, ZipperNet classifies LSNe with a receiver operating characteristic area under the curve of 0.97, predicts the spectroscopic type of the lensed supernovae with 79% accuracy, and demonstrates similarly high performance for LSNe 1-2 epochs after first detection. We anticipate that a model like ZipperNet, which simultaneously incorporates spatial and temporal information, can play a significant role in the rapid identification of lensed transient systems in cosmic survey experiments. © 2022. The Author(s). Published by the American Astronomical Society | es_ES |
dc.format.extent | 12 pag. | es_ES |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Astronomical Society | es_ES |
dc.relation.ispartof | Astrophysical Journal | es_ES |
dc.rights | © 2022 The Author(s) | es_ES |
dc.subject.other | Lens | es_ES |
dc.subject.other | Quasars | es_ES |
dc.subject.other | Galaxies | es_ES |
dc.title | DeepZipper: A novel deep-learning architecture for lensed supernovae identification | es_ES |
dc.type | article | es_ES |
dc.subject.eciencia | Física | es_ES |
dc.relation.publisherversion | https://doi.org/10.3847/1538-4357/ac5178 | es_ES |
dc.identifier.doi | 10.3847/1538-4357/ac5178 | es_ES |
dc.identifier.publicationfirstpage | 109-1 | es_ES |
dc.identifier.publicationissue | 1 | es_ES |
dc.identifier.publicationlastpage | 109-12 | es_ES |
dc.identifier.publicationvolume | 927 | es_ES |
dc.relation.projectID | Gobierno de España. ESP2017-89838 | es_ES |
dc.relation.projectID | Gobierno de España. PGC2018-094773 | es_ES |
dc.relation.projectID | Gobierno de España. PGC2018-102021 | es_ES |
dc.relation.projectID | Gobierno de España. SEV-2016-0588 | es_ES |
dc.relation.projectID | Gobierno de España. SEV-2016-0597 | es_ES |
dc.relation.projectID | Gobierno de España. MDM-2015-0509 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/240672/EU//COGS | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/291329/EU//TESTDE | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/306478/EU//COSMICDAWN | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.cc | Reconocimiento | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.facultadUAM | Facultad de Ciencias | es_ES |
dc.institutoUAM | Instituto de Física Teórica (IFT) | es_ES |