Show simple item record

dc.contributor.authorMorgan, R.
dc.contributor.authorGarcía-Bellido Capdevila, Juan 
dc.contributor.otherUAM. Departamento de Física Teóricaes_ES
dc.date.accessioned2023-02-17T12:13:52Z
dc.date.available2023-02-17T12:13:52Z
dc.date.issued2022-03-01
dc.identifier.citationAstrophysical Journal 927.1 (2022): 109es_ES
dc.identifier.issn0004-637X (print)es_ES
dc.identifier.issn1538-4357 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/706412
dc.descriptionArtículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMes_ES
dc.description.abstractLarge-scale astronomical surveys have the potential to capture data on large numbers of strongly gravitationally lensed supernovae (LSNe). To facilitate timely analysis and spectroscopic follow-up before the supernova fades, an LSN needs to be identified soon after it begins. To quickly identify LSNe in optical survey data sets, we designed ZipperNet, a multibranch deep neural network that combines convolutional layers (traditionally used for images) with long short-term memory layers (traditionally used for time series). We tested ZipperNet on the task of classifying objects from four categories - no lens, galaxy-galaxy lens, lensed Type-Ia supernova, lensed core-collapse supernova - within high-fidelity simulations of three cosmic survey data sets: the Dark Energy Survey, Rubin Observatory's Legacy Survey of Space and Time (LSST), and a Dark Energy Spectroscopic Instrument (DESI) imaging survey. Among our results, we find that for the LSST-like data set, ZipperNet classifies LSNe with a receiver operating characteristic area under the curve of 0.97, predicts the spectroscopic type of the lensed supernovae with 79% accuracy, and demonstrates similarly high performance for LSNe 1-2 epochs after first detection. We anticipate that a model like ZipperNet, which simultaneously incorporates spatial and temporal information, can play a significant role in the rapid identification of lensed transient systems in cosmic survey experiments. © 2022. The Author(s). Published by the American Astronomical Societyes_ES
dc.format.extent12 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAmerican Astronomical Societyes_ES
dc.relation.ispartofAstrophysical Journales_ES
dc.rights© 2022 The Author(s)es_ES
dc.subject.otherLenses_ES
dc.subject.otherQuasarses_ES
dc.subject.otherGalaxieses_ES
dc.titleDeepZipper: A novel deep-learning architecture for lensed supernovae identificationes_ES
dc.typearticlees_ES
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.3847/1538-4357/ac5178es_ES
dc.identifier.doi10.3847/1538-4357/ac5178es_ES
dc.identifier.publicationfirstpage109-1es_ES
dc.identifier.publicationissue1es_ES
dc.identifier.publicationlastpage109-12es_ES
dc.identifier.publicationvolume927es_ES
dc.relation.projectIDGobierno de España. ESP2017-89838es_ES
dc.relation.projectIDGobierno de España. PGC2018-094773es_ES
dc.relation.projectIDGobierno de España. PGC2018-102021es_ES
dc.relation.projectIDGobierno de España. SEV-2016-0588es_ES
dc.relation.projectIDGobierno de España. SEV-2016-0597es_ES
dc.relation.projectIDGobierno de España. MDM-2015-0509es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/240672/EU//COGSes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/291329/EU//TESTDEes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/306478/EU//COSMICDAWNes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccesses_ES
dc.facultadUAMFacultad de Cienciases_ES
dc.institutoUAMInstituto de Física Teórica (IFT)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record