Pointwise monotonicity of heat kernels
Entidad
UAM. Departamento de MatemáticasEditor
SpringerFecha de edición
2021-12-13Cita
10.1007/s13163-021-00417-8
Revista Matematica Complutense 36.1 (2023): 207-220
ISSN
1139-1138 (online); 1988-2807 (online)DOI
10.1007/s13163-021-00417-8Proyecto
Gobierno de España. PID2020-113350GB-I00; Gobierno de España. SEV-2015-0554; Gobierno de España. MTM2017-84214-C2-1-P; info:eu-repo/grantAgreement/EC/H2020/669689/EU//HADEVersión del editor
https://doi.org/10.1007/s13163-021-00417-8Materias
Fractional Laplacian; Heat Kernel; Pointwise Inequalities; Maximum Principle; MatemáticasDerechos
© The Author(s) 2021Resumen
In this paper we present an elementary proof of a pointwise radial monotonicity property of heat kernels that is shared by the Euclidean spaces, spheres and hyperbolic spaces. The main result was discovered by Cheeger and Yau in 1981 and rediscovered in special cases during the last few years. It deals with the monotonicity of the heat kernel from special points on revolution hypersurfaces. Our proof hinges on a non straightforward but elementary application of the parabolic maximum principle. As a consequence of the monotonicity property, we derive new inequalities involving classical special functions
Lista de ficheros
Google Scholar:Alonso-Orán, Diego
-
Chamizo Lorente, Fernando
-
Martínez, Ángel D.
-
Mas, Albert
Lista de colecciones del ítem
Registros relacionados
Mostrando ítems relacionados por título, autor, creador y materia.