UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Adapting reservoir computing to solve the Schrodinger equation

Author
Domingo Colomer, Laiauntranslated; Borondo, J.; Borondo, Florentinountranslated
Entity
UAM. Departamento de Química
Publisher
American Institute of Physics
Date
2022-06-03
Citation
10.1063/5.0087785
Chaos: An Interdisciplinary Journal of Nonlinear Science 32.6 (2022): 063111
 
 
 
ISSN
1054-1500 (print); 1089-7682 (online)
DOI
10.1063/5.0087785
Project
Gobierno de España. PGC2018-093854-B-I00
Editor's Version
https://doi.org/10.1063/5.0087785
Subjects
Echo State Network; Photonics; State Machine; Química
URI
http://hdl.handle.net/10486/706956
Rights
© 2022 Author(s)

Abstract

Reservoir computing is a machine learning algorithm that excels at predicting the evolution of time series, in particular, dynamical systems. Moreover, it has also shown superb performance at solving partial differential equations. In this work, we adapt this methodology to integrate the time-dependent Schrödinger equation, propagating an initial wavefunction in time. Since such wavefunctions are complex-valued high-dimensional arrays, the reservoir computing formalism needs to be extended to cope with complex-valued data. Furthermore, we propose a multi-step learning strategy that avoids overfitting the training data. We illustrate the performance of our adapted reservoir computing method by application to four standard problems in molecular vibrational dynamics
Show full item record

Files in this item

Thumbnail
Name
9072644.pdf
Size
1.263Mb
Format
PDF

Refworks Export

Google™ Scholar:Domingo Colomer, Laia - Borondo, J. - Borondo, Florentino

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17732]

Related items

Showing items related by title, author, creator and subject.

  • Optimal quantum reservoir computing for the noisy intermediate-scale quantum era 

    Domingo Colomer, LaiaAutoridad UAM; Carlo, G.; Borondo, FlorentinoAutoridad UAM
    2022-10-13
  • Computationally efficient method to construct scar functions 

    Revuelta, F.; Vergini, E. G.; Benito, R. M.; Borondo, FlorentinoAutoridad UAM
    2012-02-24
  • Semiclassical basis sets for the computation of molecular vibrational states 

    Revuelta, F.; Vergini, E. G.; Benito, R. M.; Borondo, FlorentinoAutoridad UAM
    2017-01-05
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad