UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Enhancing vehicle re-identification via synthetic training datasets and re-ranking based on video-clips information

Author
Moral De Eusebio, Paulauntranslated; García Martín, Álvarountranslated; Martínez, José M.; Bescos Cano, Jesúsuntranslated
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
Springer
Date
2023-03-21
Citation
10.1007/s11042-023-14511-0
Multimedia Tools and Applications (2023): 1-21
 
 
 
ISSN
1380-7501 (print); 1573-7721 (online)
DOI
10.1007/s11042-023-14511-0
Funded by
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature; This work is part of the preliminary tasks related to the Harvesting Visual Data (HVD) project (PID2021-125051OB-I00) funded by the Ministerio de Ciencia e Innovacion of the Spanish ´ Government
Project
Gobierno de España. PID2021-125051OB-I00
Editor's Version
https://doi.org/10.1007/s11042-023-14511-0
Subjects
Deep learning; Image processing; Surveillance videos; Vehicle re-identification; Telecomunicaciones
URI
http://hdl.handle.net/10486/707022
Rights
© The Author(s) 2023

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

Vehicle re-identification (ReID) aims to find a specific vehicle identity across multiple non-overlapping cameras. The main challenge of this task is the large intra-class and small inter-class variability of vehicles appearance, sometimes related with large viewpoint variations, illumination changes or different camera resolutions. To tackle these problems, we proposed a vehicle ReID system based on ensembling deep learning features and adding different post-processing techniques. In this paper, we improve that proposal by: incorporating large-scale synthetic datasets in the training step; performing an exhaustive ablation study showing and analyzing the influence of synthetic content in ReID datasets, in particular CityFlow-ReID and VeRi-776; and extending post-processing by including different approaches to the use of gallery video-clips of the target vehicles in the re-ranking step. Additionally, we present an evaluation framework in order to evaluate CityFlow-ReID: as this dataset has not public ground truth annotations, AI City Challenge provided an on-line evaluation service which is no more available; our evaluation framework allows researchers to keep on evaluating the performance of their systems in the CityFlow-ReID dataset
Show full item record

Files in this item

Thumbnail
Name
enhancing_moral_multimed_tools_appl_2023.pdf
Size
2.252Mb
Format
PDF
Description
Artículo

Refworks Export

Google™ Scholar:Moral De Eusebio, Paula - García Martín, Álvaro - Martínez, José M. - Bescos Cano, Jesús

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17185]

Related items

Showing items related by title, author, creator and subject.

  • Towards automatic waste containers management in cities via computer vision: containers localization and geo-positioning in city maps 

    Moral De Eusebio, PaulaAutoridad UAM; García Martín, ÁlvaroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Martínez Sánchez, José MaríaAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; Peñuela, Jesús; Martínez, Juan Carlos; Alvis, Gonzalo
    2022-08-16
  • DiVA: A Distributed Video Analysis framework applied to video-surveillance systems 

    San Miguel Avedillo, Juan CarlosAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; Martínez Sánchez, José MaríaAutoridad UAM; García Martín, ÁlvaroAutoridad UAM
    2008
  • Exploiting semantic segmentation to boost reinforcement learning in video game environments 

    Montalvo Rodrigo, Javier; García Martín, ÁlvaroAutoridad UAM; Bescos Cano, JesúsAutoridad UAM
    2022-09-15
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad