Show simple item record

dc.contributor.authorMoral De Eusebio, Paula 
dc.contributor.authorGarcía Martín, Álvaro 
dc.contributor.authorMartínez, José M.
dc.contributor.authorBescos Cano, Jesús 
dc.contributor.otherUAM. Departamento de Tecnología Electrónica y de las Comunicacioneses_ES
dc.date.accessioned2023-04-24T09:49:41Z
dc.date.available2023-04-24T09:49:41Z
dc.date.issued2023-03-21
dc.identifier.citationMultimedia Tools and Applications (2023): 1-21en_US
dc.identifier.issn1380-7501 (print)en_US
dc.identifier.issn1573-7721 (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/707022
dc.description.abstractVehicle re-identification (ReID) aims to find a specific vehicle identity across multiple non-overlapping cameras. The main challenge of this task is the large intra-class and small inter-class variability of vehicles appearance, sometimes related with large viewpoint variations, illumination changes or different camera resolutions. To tackle these problems, we proposed a vehicle ReID system based on ensembling deep learning features and adding different post-processing techniques. In this paper, we improve that proposal by: incorporating large-scale synthetic datasets in the training step; performing an exhaustive ablation study showing and analyzing the influence of synthetic content in ReID datasets, in particular CityFlow-ReID and VeRi-776; and extending post-processing by including different approaches to the use of gallery video-clips of the target vehicles in the re-ranking step. Additionally, we present an evaluation framework in order to evaluate CityFlow-ReID: as this dataset has not public ground truth annotations, AI City Challenge provided an on-line evaluation service which is no more available; our evaluation framework allows researchers to keep on evaluating the performance of their systems in the CityFlow-ReID dataseten_US
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Natureen_US
dc.description.sponsorshipThis work is part of the preliminary tasks related to the Harvesting Visual Data (HVD) project (PID2021-125051OB-I00) funded by the Ministerio de Ciencia e Innovacion of the Spanish ´ Government
dc.format.extent21 pag.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen
dc.publisherSpringeren_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.rights© The Author(s) 2023en_US
dc.subject.otherDeep learningen_US
dc.subject.otherImage processingen_US
dc.subject.otherSurveillance videosen_US
dc.subject.otherVehicle re-identificationen_US
dc.titleEnhancing vehicle re-identification via synthetic training datasets and re-ranking based on video-clips informationen_US
dc.typearticleen_US
dc.subject.ecienciaTelecomunicacioneses_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s11042-023-14511-0en_US
dc.identifier.doi10.1007/s11042-023-14511-0en_US
dc.identifier.publicationfirstpage1es_ES
dc.identifier.publicationlastpage21es_ES
dc.relation.projectIDGobierno de España. PID2021-125051OB-I00es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMEscuela Politécnica Superiores_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record