Assessment of bio-ionic liquids as promising solvents in industrial separation processes: Computational screening using COSMO-RS method
Entity
UAM. Departamento de Ingeniería QuímicaPublisher
ElsevierDate
2022-09-01Citation
10.1016/j.fluid.2022.113495
Fluid Phase Equilibria 560 (2022): 113495
ISSN
0378-3812DOI
10.1016/j.fluid.2022.113495Funded by
The authors are grateful to Comunidad de Madrid (project SUSTEC P2018/EMT-4348) and Ministerio de Economía y Competitividad of Spain (project CTQ2017-89441-R) for its financial support and Centro de Computación Científica de la Universidad Autónoma de Madrid (CCC) for its computational resources. Rubén Santiago thanks Ministerio Universidades for his Margarita Salas contract (CA1/RSUE/2021-00585)Project
Comunidad de Madrid. P2018/EMT4348/SUSTEC-CM; Gobierno de España. CTQ2017-89441-REditor's Version
https://doi.org/10.1016/j.fluid.2022.113495Subjects
Gas Liquid Absorption; Hydrocarbon Separation; Acetone; Ammonia; QuímicaRights
© 2022 The Author(s)Abstract
The use of organic solvents in the chemical industry for gas-liquid absorption or liquid-liquid extraction operations is still unavoidable. The search of “greener” solvents to replace fossil-based counterparts is a challenge for the scientific community. Biocompatible ionic liquids (bio-ILs) emerged as a sustainable approach for the development of greener processes. In this work, bio-ILs based on choline as common cation are evaluated as promising solvents in typical industrial separation processes such as gas absorption (refrigerants, CO2, H2S, NH3, or acetone) and liquid-liquid extraction (hydrocarbon separations, denitrogenation, desulfurization, and recovery of value-added compounds and/or contaminants from aqueous streams) by means of COSMO-RS method. Some bio-ILs show competitive behavior compared to the benchmark common ILs solvents for all the solutes evaluated. None of the solvents evaluated is predicted to form two liquid phases in aqueous solutions, so future work should be conducted on finding hydrophobic bio-ILs to perform these separations. On the other hand, bio-ILs in hydrocarbon separations by means of liquid-liquid extraction show competitive results in terms of selectivities (benzoate-based) and partition coefficients (bicarbonate-based) compared to benchmark sulfolane and common ILs previously tested
Files in this item
Google Scholar:Santiago Lorenzo, Rubén
-
Díaz, I.
-
González-Miquel, María
-
Navarro Tejedor, Pablo
-
Palomar Herrero, José Francisco
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.