UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Molecular Identification from AFM Images Using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks

Author
Carracedo Cosme, Jaime; Romero Muñiz, Carlosuntranslated; Pou Bell, Pablountranslated; Pérez Pérez, Rubénuntranslated
Entity
UAM. Departamento de Física Teórica de la Materia Condensada
Publisher
American Chemical Society
Date
2023-05-01
Citation
ACS Applied Materials & Interfaces 15.18 (2023): 22692–22704
 
 
 
ISSN
1944-8244 (print); 1944-8252 (online)
Funded by
We would like to acknowledge support from the Comunidad de Madrid Industrial Doctorate programme 2017 under reference number IND2017/IND7793 and from Quasar Science Resources S.L. P.P. and R.P. acknowledge support from the Spanish Ministry of Science and Innovation, through project PID2020-115864RB-I00 and the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M). C.R.-M. acknowledges financial support by the Ramón y Cajal program of the Spanish Ministry of Science and Innovation (ref. RYC2021-031176-I). Computer time provided by the Red Española de Supercomputación (RES) at the Finisterrae II Supercomputer is also acknowledged
Editor's Version
https://doi.org/10.1021/acsami.3c01550
Subjects
Atomic force microscopy; Molecular identification; Deep learning; Neural network; Image captioning; Density functional theory; Física
URI
http://hdl.handle.net/10486/707282
Rights
© 2023 The Authors

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

Spectroscopic methods like nuclear magnetic resonance, mass spectrometry, X-ray diffraction, and UV/visible spectroscopies applied to molecular ensembles have so far been the workhorse for molecular identification. Here, we propose a radically different chemical characterization approach, based on the ability of noncontact atomic force microscopy with metal tips functionalized with a CO molecule at the tip apex (referred as HRAFM) to resolve the internal structure of individual molecules. Our work demonstrates that a stack of constant-height HR-AFM images carries enough chemical information for a complete identification (structure and composition) of quasiplanar organic molecules, and that this information can be retrieved using machine learning techniques that are able to disentangle the contribution of chemical composition, bond topology, and internal torsion of the molecule to the HR-AFM contrast. In particular, we exploit multimodal recurrent neural networks (M-RNN) that combine convolutional neural networks for image analysis and recurrent neural networks to deal with language processing, to formulate the molecular identification as an imaging captioning problem. The algorithm is trained using a data set which contains almost 700,000 molecules and 165 million theoretical AFM images to produce as final output the IUPAC name of the imaged molecule. Our extensive test with theoretical images and a few experimental ones shows the potential of deep learning algorithms in the automatic identification of molecular compounds by AFM. This achievement supports the development of on-surface synthesis and overcomes some limitations of spectroscopic methods in traditional solution-based synthesis
Show full item record

Files in this item

Thumbnail
Name
molecular_carracedo_AMI_2023.pdf
Size
6.639Mb
Format
PDF
Description
Artículo

Refworks Export

Google™ Scholar:Carracedo Cosme, Jaime - Romero Muñiz, Carlos - Pou Bell, Pablo - Pérez Pérez, Rubén

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17129]

Related items

Showing items related by title, author, creator and subject.

  • Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks 

    Zazo, Ruben; Lozano Díez, AliciaAutoridad UAM; Gonzalez-Dominguez, Javier; Toledano, Doroteo T.; González Rodríguez, JoaquínAutoridad UAM
    2016-01-29
  • Substrate-induced enhancement of the chemical reactivity in metal-supported graphene 

    Romero-Muñiz, Carlos; Martín-Recio, Ana; Pou Bell, PabloAutoridad UAM; Gómez Rodríguez, José MaríaAutoridad UAM; Pérez Pérez, RubénAutoridad UAM
    2018-07-02
  • Combining nitrogen substitutional defects and oxygen intercalation to control the graphene corrugation and doping level 

    Martín-Recio, Ana; Romero-Muñiz, Carlos; Pou Bell, PabloAutoridad UAM; Pérez Pérez, RubénAutoridad UAM; Gómez Rodríguez, José MaríaAutoridad UAM
    2018-01-03
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad