UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Improving robustness in Q-Matrix validation using an iterative and dynamic procedure

Author
Najera Álvarez, Pablountranslated; Sorrel Luján, Miguel Ángeluntranslated; de la Torre, Jimmy; Abad García, Francisco Joséuntranslated
Entity
UAM. Departamento de Psicología Social y Metodología
Date
2020-09-01
Citation
10.1177/0146621620909904
Applied Psychological Measurement 44.6 (2020): 431-446
 
 
 
ISSN
1552-3497 (online); 0146-6216 (print)
DOI
10.1177/0146621620909904
Funded by
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially supported by Ministerio de Ciencia, Innovación y Universidades, Spain (Grant No. PSI2017-85022-P) and Cátedra de Modelos y Aplicaciones Psicométricas (Instituto de Ingeniería del Conocimiento and Universidad Autónoma de Madrid)
Project
Gobierno de España. PSI2017-85022-P
Editor's Version
https://doi.org/10.1177/0146621620909904
Subjects
CDM; G-DINA; GDI; Q-matrix; validation; Psicología
URI
http://hdl.handle.net/10486/707288
Rights
© The Author(s) 2020

Abstract

In the context of cognitive diagnosis models (CDMs), a Q-matrix reflects the correspondence between attributes and items. The Q-matrix construction process is typically subjective in nature, which may lead to misspecifications. All this can negatively affect the attribute classification accuracy. In response, several methods of empirical Q-matrix validation have been developed. The general discrimination index (GDI) method has some relevant advantages such as the possibility of being applied to several CDMs. However, the estimation of the GDI relies on the estimation of the latent group sizes and success probabilities, which is made with the original (possibly misspecified) Q-matrix. This can be a problem, especially in those situations in which there is a great uncertainty about the Q-matrix specification. To address this, the present study investigates the iterative application of the GDI method, where only one item is modified at each step of the iterative procedure, and the required cutoff is updated considering the new parameter estimates. A simulation study was conducted to test the performance of the new procedure. Results showed that the performance of the GDI method improved when the application was iterative at the item level and an appropriate cutoff point was used. This was most notable when the original Q-matrix misspecification rate was high, where the proposed procedure performed better 96.5% of the times. The results are illustrated using Tatsuoka’s fraction-subtraction data set.
Show full item record

Files in this item

Thumbnail
Name
improving_najera_apm_2020_ps.pdf
Size
876.4Kb
Format
PDF

Refworks Export

Google™ Scholar:Najera Álvarez, Pablo - Sorrel Luján, Miguel Ángel - de la Torre, Jimmy - Abad García, Francisco José

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17129]

Related items

Showing items related by title, author, creator and subject.

  • Improving reliability estimation in cognitive diagnosis modeling 

    Schames Kreitchmann, RodrigoAutoridad UAM; de la Torre, Jimmy; Sorrel, Miguel A.; Najera Álvarez, PabloAutoridad UAM; Abad, Francisco J.
    2022-09-20
  • cdcatR: An R package for cognitive diagnostic computerized adaptive testing 

    Sorrel Luján, Miguel ÁngelAutoridad UAM; Najera Álvarez, PabloAutoridad UAM; Abad, Francisco J.
    2021-08-09
  • Improving accuracy and usage by correctly selecting: The effects of model selection in cognitive diagnosis computerized adaptive testing 

    Sorrel, Miguel A.; Abad García, Francisco JoséAutoridad UAM; Najera Álvarez, PabloAutoridad UAM
    2021-03-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad