UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Towards a method to anticipate dark matter signals with deep learning at the LHC

Author
Arganda Carreras, Ernesto; Medina, Aníbal D.; Pérez, Andrés D.; Szynkman, Alejandro
Entity
UAM. Departamento de Física Teórica
Publisher
SciPost
Date
2022-02-01
Citation
10.21468/SCIPOSTPHYS.12.2.063
SciPost Physics 12.2 (2022): 063
 
 
 
ISSN
2542-4653 (online)
DOI
10.21468/SCIPOSTPHYS.12.2.063
Funded by
The work of EA is partially supported by the “Atracción de Talento” program (Modalidad 1) of the Comunidad de Madrid (Spain) under the grant number 2019-T1/TIC-14019 and by the Spanish Research Agency (Agencia Estatal de Investigación) through the grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597. This work has been also partially supported by CONICET and ANPCyT under projects PICT 2016-0164, PICT 2017-0802, PICT 2017-2751, PICT 2017- 2765, and PICT 2018-03682
Project
Gobierno de España. SEV-2016-0597
Editor's Version
https://doi.org/10.21468/SCIPOSTPHYS.12.2.063
Subjects
Dark Matter; Higgs; Scalar; Física
URI
http://hdl.handle.net/10486/707313
Rights
© E. Arganda et al.

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

We study several simplified dark matter (DM) models and their signatures at the LHC using neural networks. We focus on the usual monojet plus missing transverse energy channel, but to train the algorithms we organize the data in 2D histograms instead of event-by-event arrays. This results in a large performance boost to distinguish between standard model (SM) only and SM plus new physics signals. We use the kinematic monojet features as input data which allow us to describe families of models with a single data sample. We found that the neural network performance does not depend on the simulated number of background events if they are presented as a function of S/pB, for reasonably large B, where S and B are the number of signal and background events per histogram, respectively. This provides flexibility to the method, since testing a particular model in that case only requires knowing the new physics monojet cross section. Furthermore, we also discuss the network performance under incorrect assumptions about the true DM nature. Finally, we propose multimodel classifiers to search and identify new signals in a more general way, for the next LHC run
Show full item record

Files in this item

Thumbnail
Name
9052694.pdf
Size
2.178Mb
Format
PDF

Refworks Export

Google™ Scholar:Arganda Carreras, Ernesto - Medina, Aníbal D. - Pérez, Andrés D. - Szynkman, Alejandro

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17185]

Related items

Showing items related by title, author, creator and subject.

  • A method for approximating optimal statistical significances with machine-learned likelihoods 

    Arganda Carreras, Ernesto; Marcano Imaz, Xabier; Martín Lozano, Víctor; Medina, Aníbal D.; Pérez, Andrés D.; Szewc, Manuel; Szynkman, Alejandro
    2022-11-05
  • Model-independent search strategy for the lepton-flavor-violating heavy Higgs boson decay to τμ at the LHC 

    Arganda, Ernesto; Marcano, Xabier; Mileo, Nicolás I.; Morales, Roberto A.; Szynkman, Alejandro
    2019-09-01
  • Higgs effective Hlilj vertex from heavy νR and applications to LFV 

    Herrero, María J.; Arganda, Ernesto; Marcano, Xavier; Morales, Roberto; Szynkman, Alejandro
    2017-10-06
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad