PKCζ-MEDIATED GαQ STIMULATION OF THE ERK5 PATHWAY IN CARDIOMYOCYTES AND CARDIAC FIBROBLASTS

Carlota García-Hoz1,2†, Guzmán Sánchez-Fernández1,2†, Ramón García-Escudero3, María Fernández-Velasco4, Julia Palacios-García1,2, Marisol Ruiz-Meana 5, María Teresa Díaz-Meco6, Michael Leitges7, Jorge Moscat6, David García-Dorado5, Lisardo Boscá4, Federico Mayor Jr.1,2,* and Catalina Ribas1,2,*.

1Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Universidad Autónoma de Madrid, Spain 2Instituto de Investigación Sanitaria La Princesa, Madrid, Spain 3Molecular Oncology Unit CIEMAT, Madrid, Spain 4Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain. 5Vall d’Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain, 6 Sanando-Burnham Medical Research Institute, Tumor Microenvironment Program, La Jolla, CA, USA, 7 The Biotechnology Centre of Oslo, University of Oslo, Norway

† Equal contribution
* Corresponding authors

Address correspondence to:
Catalina Ribas
Centro de Biología Molecular “Severo Ochoa”
Universidad Autónoma de Madrid
28049 Madrid, Spain
Tel: +34-91-1964640
Fax: +34-91-1964420
E-mail: cribas@cbm.uam.es

Running title: Gαq/PKCζ signaling in cardiac cells
ABSTRACT

Gq-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gαq-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gαq acts as an adaptor protein that facilitates PKCζ-mediated activation of ERK5 in epithelial cells. Since the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in cardiovascular Gq-dependent signaling using both cultured cardiac cell types and chronic administration of angiotensin II in mice. We find that PKCζ is required for the activation of the ERK5 pathway by Gq-coupled GPCR in neonatal and adult murine cardiomyocyte cultures and in cardiac fibroblasts. Stimulation of ERK5 by angiotensin II is blocked upon pharmacological inhibition or siRNA-mediated silencing of PKCζ in primary cultures of cardiac cells and in neonatal cardiomyocytes isolated from PKCζ-deficient mice. Moreover, upon chronic challenge with angiotensin II, these mice fail to promote the changes in the MEK5/ERK5 pathway, in gene expression patterns and in hypertrophic markers observed in wild-type animals.

Overall, our data put forward that PKCζ is essential for Gq-dependent ERK5 activation in cardiomyocytes and cardiac fibroblasts and indicate a key cardiac physiological role for this recently described Gαq/PKCζ/MEK5 signaling axis.

INTRODUCTION

G protein-coupled receptors (GPCR) signaling through Gq proteins and MAPK cascades are known to play an important role in cardiovascular function and disease (1) (2) (3) (4). Enhanced angiotensin II, endothelin-1 and catecholamine (α1-adrenergic) signaling correlate with pathological cardiac hypertrophy. Cardiac overexpression of a constitutively active α1h–AR or of wild-type angiotensin AT1-receptor (AT1R) is sufficient to trigger this process (5) (6), as does chronic administration of angiotensin II to wild-type mice (7) (8). On the contrary, agents that block angiotensin synthesis prevent the development of pressure-overload-induced cardiac hypertrophy in animal models and in humans (9) (10). The direct involvement of Gqα-mediated signaling is further stressed by reports showing that cardiac-specific overexpression of Gq in transgenic mice triggers cardiac hypertrophy in a similar manner to pressure overload and enhances expression of foetal genes, whereas the over-expression of a dominant-negative Gqα peptide in the heart renders mice resistant to pressure overload-triggered hypertrophy [(11) (12) (4), and references therein].

Gq stimulation can initiate a number of downstream signaling pathways. By coupling to its classic effector phospholipase Cβ (PLCβ), activated Gq proteins promote diacylglycerol and inositol-1,4,5-triphosphate production, leading to the activation of conventional and novel protein kinase C (PKC) isoforms and to the mobilization of internal Ca2+, respectively (11) (12). This in turn leads to the activation of additional intracellular pathways relevant to hypertrophy such as the calcineurin/NFAT or the calmodulin kinase II cascades (11) (12) (13).

However, Gq can also activate other signaling pathways independently of PLCβ stimulation. Gqα triggers the RhoA cascade, also required for a Gq-induced hypertrophic response through a direct interaction with p63RhoGEF (14) (15) (16) (17). More recently, we have reported a novel role for Gqα as a scaffold protein capable of recruiting both protein kinase C zeta (PKCζ) and the kinase MEK5 in an active complex, leading to the activation of the ERK5 pathway in epithelial cells (18). ERK5 is a member of the MAPK family that is activated by the upstream MEK5 kinase in response to different growth factors and cellular stressors (19). Activation of Gqα is a potent inducer of MAPK signaling in cardiac myocytes. The complex role of ERK1/2, JNK and p38 MAPK cascades in promoting compensated
cardiac hypertrophy and/or transition to heart failure has been extensively investigated (1)
(12). Additionally, an important cardiac role for ERK5 has been recently identified (20).
Whilst genetic deletion of ERK5 or MEK5 has indicated a role for this pathway in
angiogenesis, endothelial cell physiology and cardiovascular development (21) (22), recent
data also point to a role of ERK5 in cardiac hypertrophy and cardiomyocyte survival (23)
(24) (25) . Notably, the transcription factors MEF2A and 2C, well-known downstream
targets of ERK5, promote cardiac hypertrophy in transgenic mice (26) whereas
targeted deletion of this kinase attenuates the hypertrophic response mediated by MEF2
activation in vivo (25).
However, despite the important role of both Gq and ERK5 in cardiovascular function, the
occurrence of a functional relationship between these pathways in cardiac cells has not
been fully elucidated. In this report, we identify the atypical PKCζ as a key link
underlying Gαq-coupled GPCR-mediated stimulation of the ERK5 cascade in
cardiomyocytes and cardiac fibroblasts and show that this new signaling axis is relevant
for angiotensin-induced hypertrophic pathways in vivo.

EXPERIMENTAL PROCEDURES

Materials.
The affinity-purified rabbit polyclonal antibody Gαq/11 (C19) was purchased from
Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). The rabbit polyclonal antibody
that recognizes ERK5 and the monoclonal antibody against PKCζ (C24E6) were from
Cell Signaling Technologies (Billerica, MA, USA). The anti-phospho (pT/pY 218/220) ERK5
polyclonal antibody was purchased from Invitrogen (Carlsbad, CA, USA). Angiotensin
II was obtained from Sigma (St. Louis, MO, USA) and the myristoylated PKCζ pseudosubstrate peptide
(Myr-S1YRGRARRWRKL) from Biosource (Camarillo, CA, USA). Pertussis toxin was
purchased from Biomol Research Laboratories (Plymouth Meeting, PA, USA).
All other reagents were of the highest commercially-available grades.

Cell culture and treatments.

Primary cultures of neonatal mouse cardiomyocytes and fibroblasts were prepared
from C57BL/6j mice or PKCζ-deficient mice or wild-type animals (SV129 background)
by dissociation of neonatal (1-2 days) hearts. After plating to remove fibroblasts for two
hours, cardiomyocytes were plated in M12 multiwell precoated with 0.02% gelatin
(300,000 cells per well) and cultured in DMEM plus 10% serum for 48 h. Cardiomyocytes were cultured for 2 days
before use whereas cardiac fibroblasts were expanded and passed twice before the assay
in order to remove contamination by endothelial cells. Both cell types were
cultured in DMEM (D5648, Sigma-Aldrich) supplemented with 10% FBS.
In all cases, the desired cell type was stimulated with angiotensin II (100 nM) in
serum-free media, during the indicated time periods. The cells were serum-starved for 5-6
h before ligand addition to minimize basal kinase activity. For the inactivation of Gi proteins, cells were
pretreated with pertussis toxin (100 ng/ml) for 16 h. Isolation of cardiac myocytes was
performed as previously described (27). Adult male C57BL6 mice or Wistar rats were
heparinized (4U/g) and anaesthetized with sodium pentobarbital (50mg/kg). The hearts
were removed and mounted on a Langendorff-perfusion apparatus. The ascending aorta was
cannulated and a retrograde perfusion was set up. The hearts were successively perfused with the following oxygenated solutions at
36°C: (1) standard nominally Ca2+-free Tyrode solution (3min), (2) standard
nominally Ca2+-free Tyrode solution (15min) containing type II collagenase. The hearts
were removed from the Langendorff apparatus, and after removal of atria, the
ventricles were cut off and gently shaken for 3 min in a standard Tyrode solution
containing 0.1mM CaCl2 to disperse the isolated cells. The resulting cell suspensions
were filtered through a 250µm nylon mesh and centrifuged for 4 min at 20g. Finally, the
cell pellets were stored in Tyrode solution (1mM CaCl2) and stimulated with
angiotensin II (100nM) shortly after extraction.

PKCζ knock-down.
Primary neonatal mouse cardiomyocytes were reverse-transfected using siRNA specific oligos for PKCζ (Mouse PRKCZ, NM_008860, on-target plus SMARTpool L-040823-00-0005, sequences GAUCGACCAGUCCGAAUUU, CAAGGCCUCACACCGUCUUA, CAUCAAGUCUCAGCCUUUC and GGGCAUGCCUUGUCCUGGA) were purchased from Dharmacon (Roche, Palo Alto, CA). Scrambled oligos were purchased from Ambion to serve as negative control. siRNAs were transfected using DharmaFECT 1 reagent (Dharmacon) to reach a final concentration of 50nM. A PKCζ specific antibody (Cell Signaling) was utilized to assess effective knockdown of the kinase by Western blot.

Determination of MAPK stimulation.

The activation state of ERK5 was measured by Western blot analysis of cell lysates by using specific anti-phospho-ERK5 (1:500) or anti-ERK5 (1:500) antibodies. In the latter case, the stimulation of ERK5 can be detected by the presence of a band with slower electrophoretic mobility that represents the active, phosphorylated form of the protein (28). Both approaches have been used by us (18) and by other laboratories (29) (30) (31) as a reliable method for determining ERK5 activation. To obtain cell lysates, cells were washed with ice-cold PBS-buffer plus 1mM sodium orthovanadate and subsequently solubilized in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% (w/v) Nonidet P-40, 0.25% (w/v) sodium deoxycholate, 1 mM EGTA, 1 mM NaF, supplemented with 1 mM sodium orthovanadate plus a mixture of protease inhibitors). Lysates were resolved by 6-10% SDS-PAGE and subjected to immunoblot analysis as previously described (32). Bands were quantified by laser-scanner densitometry and the amount of phospho-ERK5 protein normalized to the amount of the total loaded protein (ERK5 or GAPDH/actin/α-tubulin), as assessed by the specific antibodies. Statistical analysis was performed using the two-tailed Student’s t test, as indicated.

Chronic Angiotensin treatment in vivo.

The generation of PKCζ knockout mice (SV129J background) has been previously described (33). Littermate wild-type and PKCζ/- male mice (32 weeks of age) were subjected to continuous infusion of angiotensin II (or PBS as a control) for 14 days, a well established model for the induction of cardiac hypertrophy (8) (34). Angiotensin II dissolved in PBS was continuously and subcutaneously infused at a rate of 432 µg/kg/day using Alzet osmotic minipumps (model 2002, Alza Corp., Mountain View, CA) implanted dorsally under isofluorane anesthesia as reported (34). Heart rate and electrocardiogram (ECG) components were measured using a non-invasive recording electrocardiogram method in conscious mice [ECGenieTM ECG Screening System (Mouse specifics, Inc., Boston MA)] at 14 days after pump implantation as reported (35). Before sacrifice, blood plasma samples were obtained to assess circulating levels of pro ANP (1-98), which reflects chronic levels of ANP secretion (36) (37), by using an established immunoassay (proANP EIA, Alpco Diagnostics, Windham, NH). Finally, hearts from wild-type or knockout mice were excised, cleaned of blood, the weight of the whole heart was measured (HW) and the ratio to body weight (HW/BW) or tibia length was calculated. Mice were maintained under pathogen-free conditions and all the experiments were performed in accordance with guidelines of the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (Directive 86/609/EEC) and with the authorization of the Bioethical Committee of the University Autónoma of Madrid (CEI-21-440).

Immunohistochemistry and histological analysis.

For histological analysis, hearts from wild-type or PKCζ knockout mice were fixed in formalin and embedded in paraffin wax. Sections of 5 µm were processed for immunohistochemistry. To compare the expression of Ets-1 and activated MEF2C and MEK5 in wild-type versus knockout mice a high temperature antigen unmasking technique (10-minute microwaving of slides in Tris-EDTA pH 8.0 for 90 seconds) was carried out. Antigen retrieval was performed after deparaffinization to enhance staining. Sections were then incubated with 5% horse serum for 30 minutes, and then washed three
times with sterile PBS (pH 7.5) prior to incubation with the appropriate primary antibodies at 1:50/1:100 dilutions. Biotin-conjugated secondary antibodies were purchased from Jackson ImmunoResearch and used at 1/4000 dilution. For all antibodies, signal was amplified using avidin peroxidase (ABC elite kit Vector) and visualized using diaminobenzidine as a substrate (DAB kit Vector). Finally, sections were stained with haematoxylin. Image analysis was performed with ImageJ 1.46a software (Wayne Rasband, National Institutes of Health, Bethesda, MD). Four images were acquired from a randomly selected location in each slide. Random RGB images were converted to 8 bit images for the quantification of the DAB signal to obtain the quantification staining parameters.

Quantitative Real-Time PCR.

Total RNA from hearts of PBS- or angiotensin-treated animals was extracted with using RNeasy kit (Qiagen, Valencia, CA) following manufacturers’ recommendations. The integrity of the RNA populations was tested in the Bioanalyzer (Agilent, Santa Clara, CA) showing 28S/18S ratios above 1.7. Gene expression levels for Nppa, Col1α2 and MAPK7 were determined using quantitative real-time PCR (qRT-PCR). Total RNA (1 µg) was reverse-transcribed into cDNA by the Gene Ampkit (Perkin Elmer). qRT-PCR reactions were performed in triplicates in 10 µl final volume with the cDNA amount equivalent to 5 ng of total RNA, 250 nM of each primer and 5 µl of Power Sybr Green PCR Master Mix (Applied Biosystems PN 4367659) using a CFX 384 Real Time System, C1000 Thermal Cycler (Bio-Rad). A melting curve was included at the end of the program to verify the specificity of the PCR product. PCR primer sequences were selected using Universal Probe Library (Roche Applied Science). The expression values were normalized using the average of the housekeeping genes 18S ribosomal RNA, HPRT (hypoxanthine-guanine phosphoribosyltransferase) and GAPDH.

Gene expression microarray analysis.

Total RNA was purified from mice hearts using RNeasy Fibrous Tissue Mini Kit, following the manufacturer’s instructions (Qiagen). RNA was hybridized to Mouse Expression MOE 430 2.0 Affymetrix GeneChips, containing more than 45,000 probesets covering the mouse transcriptome. CEL files obtained after biochip scanning were used to normalize gene expression values using RMA (38) (39). Log2 transformed values were mean centered (mean=0, stdv=1). In order to compare different mouse models of heart hypertrophy, the series matrix files corresponding to the experiments GSE7781 (40), GSE5500 (41), GSE12337 (42), and GSE8771 were downloaded from GEO website and performed in the same Affymetrix GeneChip version (MOE430 2.0). After removing irrelevant experiments, log2 transformed values were also mean centered (mean=0, stdv=1) independently. This transformation allowed the comparison of expression values from different datasets in a unique multi-experiment dataset. Differential expression analysis between control and hypertrophic samples was done using a Ttest and probesets were selected if they displayed >1.8 fold change with p-val <0.008. Using these thresholds, a total number of 1,536 probesets were found to be differentially expressed, being 823 under-expressed in hypertropy and 713 over-expressed. Hierarchical clustering of the samples performed from the selected probesets was done using Pearson distance and average linkage. To assure a proper grouping, samples and genes were resampled 100 times using bootstrapping. Gene expression microarray data generated has been submitted to GEO database with the Accession number GSE29145, and accomplishes MIAME guidelines.

Functional analysis.

We performed enrichment analysis of functions of the differentially expressed genes using the Gene Ontology (GO) database and the web tool Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) (43) (44). Briefly, probesets lists of either Group I or Group II genes in the differential expression analysis of hypertrophy performed were uploaded in DAVID, which computes enrichment in GO “biological processes”. The enriched functions or “terms” were ordered
by statistical relevance, displaying only those functions with <0.05 FDR value of corrected p-val. Protein interaction networks were obtained using the Pathway Studio software (Ariadne Genomics).

RESULTS

The angiotensin Gq-coupled receptor activates ERK5 in cardiomyocytes and cardiac fibroblasts in a PKCζ-dependent manner.

We have recently shown that activation of the m1-muscarinic Gq-coupled receptor in epithelial cells promoted the stimulation of the ERK5 pathway by biochemical routes not involving the classical Gαq effector PLCβ, nor cytoplasmic tyrosine kinases or EGF receptor transactivation (18). Since both Gq-coupled GPCR and ERK5 play an important role in the cardiovascular system function and dysfunction (see Introduction), we sought to determine whether a key messenger acting through Gαq and PKCζ was essential for stimulation of the ERK5 cascade in different cardiac cell types. Primary cultures of neonatal mouse cardiomyocytes were incubated with angiotensin II for different periods of time and endogenous ERK5 activation was assessed by immunoblot analysis using an ERK5 antibody that detects ERK5 stimulation by the appearance of a band of slower electrophoretic mobility, corresponding to the phosphorylated, stimulated kinase (Fig. 1A). A clear, time-dependent increase in endogenous ERK5 activation was detected in response to this agonist.

Our previous results in epithelial cells indicated that a functional association between Gqα and PKCζ was essential for stimulation of the ERK5 pathway by Gq-coupled GPCR agonists (18). To establish whether this novel pathway was also operating in cardiomyocytes, primary neonatal cell cultures were treated either with scrambled or PKCζ-targeting siRNA oligos. Interestingly, whereas a clear ERK5 activation (assessed using a specific phospho-ERK5 antibody) was noted in cardiomyocytes treated with scrambled siRNA (Fig. 1B), angiotensin-mediated endogenous ERK5 stimulation was not detected upon siRNA-induced PKCζ downregulation. We also investigated ERK5 stimulation by angiotensin in cardiomyocytes isolated from PKCζ-deficient mice or wild-type littermates (SV129J background) (33). As in cardiomyocytes obtained from the C57BL/6J strain, angiotensin promoted a clear ERK5 activation in cells from wild-type, with an earlier peak of activation, whereas this response was absent in PKCζ-/- cardiomyocytes (Fig. 1C). Furthermore, we found that angiotensin-dependent ERK5 stimulation could also be observed in cardiomyocytes isolated from adult mouse (Fig. 1D) or rat (Fig. 1E) and that this process was blocked in the presence of a specific PKCζ inhibitor (Fig. 1E). Collectively, these data indicated that PKCζ is strictly required for Gq-mediated ERK5 stimulation in cardiomyocytes.

Interestingly, angiotensin II-mediated stimulation of endogenous ERK5 was also observed in cardiac fibroblasts (Fig. 2A), with slight differences in the time-course of activation. As we observed in epithelial cells for other Gq-coupled GPCRs (18), ERK5 activation by angiotensin II in cardiac fibroblasts was not affected in the presence of pertussis toxin (PTX) (supplemental Fig. 1), thus indicating that this process does not involve paracrine transmodulation of Gi-coupled GPCR. Moreover, in line with the data in cardiomyocytes, the pretreatment of primary neonatal mouse (Fig. 2B) or rat (Fig. 2C) cardiac fibroblasts prior to agonist challenge with a PKCζ inhibitor (the cell-permeable myristoylated PKCζ pseudosubstrate peptide (45) (46)) markedly decreased endogenous ERK5 phosphorylation in response to angiotensin II, thus suggesting that PKCζ is also required for Gq-mediated ERK5 activation in cardiac fibroblasts.

Role of the Gαq/PKCζ pathway in angiotensin-mediated heart signaling and gene expression patterns in vivo.

To assess the potential relevance of the Gαq/PKCζ pathway in cardiac cells in vivo, we subjected homozygous null mice (PKCζ-/−) and matched control littermates (wild-type) to chronic angiotensin II (or control vehicle) infusion for 14 days using osmotic minipumps. This is a classical, well-established procedure to assess angiotensin effects in
cardiac functions and to promote cardiac hypertrophy in mice models (34) (8). Interestingly, immuno-histological analysis of the hearts at the end of the chronic infusion period using phosphospecific antibodies showed that MEK5 (the upstream activator of ERK5) and MEF2C (a well-established downstream target of ERK5) display a higher phosphorylation state upon angiotensin treatment in wild-type animals that is absent in PKCζ-deficient mice (Fig. 3). These data further indicate that PKCζ is an important mediator of ERK5 activation by Gq-coupled GPCR in murine heart in vivo and support that the Gq/PKCζ/ERK5 pathway plays a relevant role in the response triggered by angiotensin.

Enhanced signaling by Gq-coupled GPCR often underlies the development of pathological cardiac hypertrophy. Therefore, we conducted a global microarray gene expression pattern analysis using total RNA isolated from wild-type or PKCζ-deficient mice treated with PBS or with chronic angiotensin II-infusion, and compared these data with the results published for different mouse models of heart hypertrophy (TAC or AT1 receptor transgenic mice), using the same Affymetrix GeneChip version. Test analysis was performed in order to find differences in gene expression patterns between experimentally assessed hypertrophic hearts and controls (see Experimental Procedures). A total number of 1,536 probesets that did accomplish statistically significant criteria for differential expression were identified and listed as either over-expressed in hypertrophy (Group I) or under-expressed (Group II) compared to control animals (supplemental Tables S1 and S2). This information was used to group genes and samples using unsupervised hierarchical clustering (Fig 4A). Our gene profiling analysis demonstrated that the expression patterns of animals developing hypertrophy as a consequence of TAC, AT1R over-expression or angiotensin II infusion, were clearly separated from control treatments. Importantly, whereas our wild-type angiotensin II-treated mice consistently segregated with the “hypertrophic” expression profile group, the angiotensin II-treated PKCζ-deficient mice were included among the control group animals, together with PBS-treated animals. These results indicate that, upon angiotensin II treatment, PKCζ-deficient mice do not display a gene expression pattern characteristic of hypertrophic hearts.

Consistently, amongst Group I genes we found several whose products are considered hypertrophic markers, as ANP (Nppa) and brain natriuretic peptide (Nppb), as well as type I α2 procollagen (Col1α2) and procollagen type IV alpha (col4α), that are overexpressed in cardiac fibrosis (47) (48) (49). These genes were not over-expressed in samples from angiotensin II-treated PKCζ-deficient mice (supplemental Table S1 and S2). Additionally, the biological functions of the differentially expressed genes were studied using DAVID software. Genes over-expressed in hypertrophy (Group I) included functions related to cell cycle and cellular division, cellular adhesion, cytoskeleton organization, phosphate transport and development (Fig. 4B), some of which can be related to cellular changes required for the induction of the hypertrophic phenotype. The under-expressed genes (Group II) represented functions involved in metabolism, oxidative phosphorylation, cell respiration and electron transport, which have been described to be down-regulated in hypertrophic hearts (50) (48).

Microarray data were further analyzed using Pathway Studio (Ariadne Genomics) to identify and characterize possible targets whose alteration in gene expression could be related to the activation of the ERK5 signaling pathway. This analysis revealed that expression of ERK5 (Mapk7) itself and of its direct target ETS-1 (Ets-1) (51) was up-regulated in angiotensin II-treated wild-type mice compared to angiotensin II-treated PKCζ-deficient mice or control mice (Fig. 5A). The same was true for gene products downstream the ETS-1 transcription factor (Col1α2, Bcl2). Consistently, immunohistological analyses of heart sections using an ETS-1 specific antibody confirmed a marked increase in ETS-1 protein expression in angiotensin II-treated wild-type mice compared to angiotensin II-treated PKCζ-/animals (Fig. 5B). In this regard, it is interesting to point out that some genes regulated by other known downstream targets...
of ERK5 were also up-regulated. These are Ccna2 (directly controlled by c-Myc), Nppa, and Colla2 (directly controlled by c-jun) and Bcl2 (directly controlled by CREB) (Fig. 5A, see also supplemental Tables S1 and S2). A quantitative RT-PCR analysis in cardiac tissue confirmed an increase in the mRNA expression of several of the relevant genes highlighted in Fig. 5A in angiotensin II-treated wild-type mice compared to angiotensin II-treated PKCζ-deficient littermates, such as the hypertrophic biomarker atrial natriuretic peptide (Nppa), collagen, type I, alpha 2 (Colla2) and mitogen-activated protein kinase 7 (MAPK7/ERK5) (Fig. 5B).

Overall, these data indicated the absence of an altered gene expression pattern related to cardiac hypertrophy in PKCζ-deficient mice upon angiotensin II treatment in contrast to that observed in wild-type mice, suggesting an important role for the Gq/PKCζ axis in cardiac physiology. Consistent with these data, an initial analysis indicated that several markers that correlate with cardiac hypertrophy were altered upon angiotensin treatment in wild-type, but not in PKCζ-deficient mice. Plasma levels of ANP were markedly enhanced upon angiotensin infusion in wild-type, but not in PKCζ-deficient mice (Fig. 6A), in agreement with heart expression levels (Fig. 5C). Similarly, angiotensin-treated wild-type mice showed a significant increase in heart weight to-body weight or tibial length ratios compared to vehicle-infused animals that was not observed in PKCζ-deficient mice (Fig. 6B). In addition, an electrocardiographic (ECG) analysis performed at the end of the chronic infusion period indicated that angiotensin II promoted a clear increase in the duration of the QRS and QT components in wild-type animals (what has been reported to correlate with left ventricular hypertrophy (52) (53) (54)) compared to vehicle-treated mice. However, no noticeable ECG changes were induced by angiotensin-II in PKCζ-deficient animals (Fig. 6C). Taken together, these data suggest that the absence of PKCζ impairs the induction of cardiac hypertrophy by the Gq/PKCζ coupled GPCR agonist angiotensin II.

DISCUSSION

In this report, we show that PKCζ is required for the stimulation of the ERK5 pathway by the Gq-coupled GPCR angiotensin II receptor in cardiomyocytes and cardiac fibroblasts. Moreover, we suggest an important pathophysiological role for this Gqζ/PKCζ/ERK5 axis in the triggering of signaling and gene expression pathways related to cardiac hypertrophy in response to angiotensin *in vivo*.

We observe that angiotensin II can promote ERK5 activation in both neonatal and adult murine cardiomyocytes and in neonatal cardiac fibroblasts, although the extent and kinetics of ERK5 stimulation can vary with the cell type or the mice strain. In agreement with our previous findings for other Gq-coupled GPCR in epithelial cells (18), this process does not appear to involve cross-talk with Gi-coupled signaling, as has been described for angiotensin II-mediated ERK1/2 activation in cardiac fibroblasts (55). On the other hand, pharmacological inhibition or siRNA-mediated silencing of PKCζ completely abrogated angiotensin-induced ERK5 activation in cardiomyocytes or cardiac fibroblasts, consistent with the lack of activation of this cascade in cardiomyocytes isolated from PKCζ-deficient mice. Overall, these data suggest that PKCζ is required for angiotensin-induced ERK5 stimulation in these cell types, most likely by mechanisms involving the scaffold role of Gqζ and the formation of Gqζ/PKCζ/MEK5 complexes as we have previously demonstrated (18).

Recent reports have indicated that angiotensin II is able to induce hypertrophy through activation of ERK5 in aortic smooth muscle cells (56) (57) and in rat neonatal cardiomyocytes (58), suggesting the functional involvement of PKC/PKD or PKCε, respectively. Although these differences might be explained by the different cell types used, the possibility exists that several PKC isoforms might be required for full activation of the ERK5 pathway by AT1 receptors.

The finding that PKCζ-deficient mice do not undergo the changes induced in wild-type animals upon chronic challenge with angiotensin II in the MEK5/ERK5/MEF2C pathway, in heart global gene expression and in hypertrophic markers suggest an important pathophysiological role for the Gqζ/PKCζ axis. Although PKCζ was known to be
present in cardiac cells and to translocate in response to Gq-coupled GPCR agonists (59), no cardiac-related phenotype had been reported in PKCζ-deficient mice in the absence of agonist challenge (33). It is worth noting that PKCζ deficiency does not alter the levels of the other PKC isotypes in different tissues (33) thus making unlikely that changes in such PKC isoforms (11) may underlie the observed effects on Gq signaling. The heart hypertrophy parameters determined herein do not allow establishing whether they are the consequence of cardiomyocyte hypertrophy, increased fibroblast proliferation/fibrosis, enhanced proliferation of other cardiac cell populations or a combination of some of these processes. Since we report for the first time that ERK5 can also be activated by angiotensin II in neonatal cardiac fibroblasts, and given the emerging role of cardiac fibroblasts in cardiovascular function and dysfunction (60) (61), the contribution of different heart cell types to the observed hypertrophic phenotype clearly merits future investigation.

The induction of cardiac hypertrophy and eventually cardiac failure by agents acting through Gq-coupled GPCR appears to be a complex process involving changes in highly interconnected signaling pathways (including calcium homeostasis, PKC, MAPK and PI3K/AKT cascades) triggered upon receptor stimulation (1) (62) (11) (12). The primary downstream actions of Gq-coupled GPCR have been tied to the activation of its canonical effector PLCβ, leading to the stimulation of conventional and novel PKC isoforms, calcium mobilization and to the regulation of the calcineurin/NFAT cascade. In particular, the splicing variant PLCβ1 seems to be involved in the hypertrophic responses initiated by Gq-coupled α1-adrenergic receptors in cardiomyocytes (63). However, other reports have shown a lack of correlation between PLCβ activation and the cardiac hypertrophy phenotype induced in transgenic mouse lines expressing activated Gαq, suggesting a role for additional pathways in this process (64). In line with this notion, our data suggest that the functional link between Gαq and PKCζ is also necessary for the development of Gαq-induced cardiac hypertrophy programmes. Our data are consistent with the idea that the absence of PKCζ impairs the ability of Gq-coupled angiotensin receptors to promote cardiac hypertrophy programmes by disrupting Gαq signaling to ERK5. The immunohistochemical data in hearts of PKCζ-deficient mice following chronic angiotensin II infusion, demonstrate a decrease in the phosphorylation/activation status of its upstream kinase MEK5, as well as of its well-known downstream target, MEF2C, compared to wild-type littersates. Moreover, global gene expression analysis indicate that ERK5 (MapK7) itself and several direct (Ets-1) and indirect (NppA, Col1a2, Cena2, Bcl2) ERK5 targets are upregulated in angiotensin-treated wild-type animals but not in PKCζ-deficient mice. These results are in agreement with previous reports showing that angiotensin II infusion promotes ERK5 activation in mice myocardium (8), that over-expression of either upstream activators (MEK5) or downstream targets (MEF2A and C) of ERK5 induce cardiac hypertrophy in mice (23) (26), and that the activity of ERK5 is increased during left ventricular hypertrophy (24) (59), whereas targeted deletion of ERK5 attenuates the hypertrophic response in the heart (25). It is also worth noting that high levels of the antiapoptotic protein Bcl2 have been found in early stages of hypertrophy (65) and that arterial wall thickness, peri-vascular fibrosis and cardiac hypertrophy induced by angiotensin II treatment are significantly reduced in Ets-1 deficient mice (66).

Although our data support the idea that the Gαq/PKCζ/ERK5 axis plays a relevant role in the development of cardiac hypertrophy signaling and gene expression programmes triggered by angiotensin II, the possibility that PKCζ deficiency may alter additional Gαq signaling pathways downstream of PKCζ cannot be ruled out. PKCζ has been shown to increase atrial natriuretic factor in ventricular cardiomyocytes (67) and more recently, to be involved in cardiac sarcomeric protein phosphorylation (68), which can be relevant during mechanical heart stress (69). Interestingly, PKCζ directly participates in the activation of MAPK and NFkB in several cell types (reviewed in (70,71)), pathways widely known to be involved in cardiac hypertrophy (1) (12). The potential triggering
of PKCζ downstream signaling pathways other than the ERK5 cascade upon Gq-coupled GPCR activation is being actively investigated in our laboratory.

In summary, we unveil that the novel Gαq/PKCζ signaling axis plays a key role in the development of cardiac hypertrophy programmes in response to angiotensin. Since Gαq and PKCζ protein levels have been reported to increase in cardiomyocytes after volume overload-induced hypertrophy (72) it is tempting to suggest that such pathway would be particularly active in such pathological settings, providing new targets for therapeutic intervention.

Acknowledgements
Our laboratory is funded by grants from Ministerio de Educación y Ciencia (SAF2008-00552), Fundación Ramón Areces, The Cardiovascular Network (RECAVA) of Instituto de Salud Carlos III (RD06-0014/0037), Comunidad de Madrid (S-SAL-0159-2006) to F.M. and Instituto de Salud Carlos III (PI080461) to C.R. We thank Dr. Michel Herranz (Salamanca, Spain) for help with the ECG experiments.

REFERENCES
19. Obara, Y., and Nakahata, N. Mol Pharmacol 77, 10-16
FIGURE LEGENDS

Figure 1.- Stimulation of Gq-coupled GPCR by angiotensin II promotes ERK5 activation in cardiomyocytes in a PKCζ-dependent way

A, Neonatal mouse primary cardiomyocytes cell cultures were incubated with 100 nM Angiotensin II for the indicated times, and endogenous ERK5 activation determined with an ERK5-antibody that recognizes both the phosphorylated (upper band) and un-phosphorylated (lower band) forms of ERK5 as detailed in Experimental Procedures. Data (mean ± SEM of 3 independent experiments) were expressed as fold-activation compared to the absence of agonist. *p<0.05, two tailed t-test when compared to basal conditions. B, C, Angiotensin II-induced ERK5 activation is abrogated upon PKCζ down-regulation in neonatal mouse cardiomyocytes. B, Primary cardiomyocytes were treated with scrambled or PKCζ-targeting siRNA oligos as detailed in Experimental Procedures, and then challenged with angiotensin 100 nm for the indicated times. ERK5 activation was determined in cell lysates with a phospho-ERK5 specific antibody. Along with PKCζ expression, total ERK5 and alpha-tubulin levels were also determined as loading controls. C, Primary cultures of cardiomyocytes were obtained from wild-type (wt) or PKCζ-deficient (PKCζ-/-) mice as detailed in Experimental Procedures, and challenged with angiotensin 100 nM for different time periods. ERK5 activation was monitored and quantified by laser densitometry and data (mean ± SE of 3 independent experiments, with activation in the absence of angiotensin taken as control condition) expressed as percentage of the phosphorylated kinase (p-ERK5) versus total ERK5. D, E, Angiotensin triggers ERK5 stimulation in adult murine cardiomyocytes. Primary cultures of adult mouse (D) or rat (E) cardiomyocytes were isolated as detailed in Experimental Procedures and challenged with Angiotensin 100 nM for 15 min. E, Adult rat cardiomyocytes were preincubated with vehicle or a myristoylated PKCζ pseudosubstrate inhibitor (10 µM). ERK5 activation was detected as in panel B, and data normalized using GAPDH as loading control and expressed as fold-induction over basal conditions. Data are mean ± SE of 3 independent experiments. *p<0.05, two tailed t-test when compared to basal (D) or control (E) conditions. Representative blots are shown in all panels.

Figure 2.- PKCζ is required for Angiotensin II-mediated stimulation of the ERK5 pathway in cardiac fibroblasts.

A, Neonatal mouse cardiac fibroblasts were challenged with angiotensin and ERK5 stimulation determined as in Figure 1B. Data (mean±SE of 3 independent experiments) were normalized using actin as a loading control, and expressed as fold-induction compared to the absence of agonist *p<0.05, **p<0.01. B, C, Mouse (B) or rat (C) cardiac fibroblasts were preincubated with vehicle or with a myristoylated PKCζ pseudosubstrate inhibitor (10 µM) as detailed in Experimental Procedures, challenged with angiotensin 100 nM for the indicated times, and ERK5 activation determined as in panel A. Blots are representative of 2-3 experiments.

Figure 3.- Activation of MEK5 and MEF-2C upon chronic angiotensin administration is inhibited in PKCζ-deficient mice.

PKCζ-deficient mice (PKCζ -/-) and matched wild-type (WT) control littersmates were subjected to chronic angiotensin II infusion (or phosphate-buffered saline, PBS, as a control vehicle) for 14 days using osmotic minipumps as detailed in Experimental Procedures. The activation status of MEK5 and MEF2C was assessed by immunohistochemistry using phosphospecific antibodies. Brown colour indicates positive DAB staining. Signal intensity was quantified as detailed in Experimental Procedures, and data plotted below represents the average of 3 independent experiments. *p<0.05, two tailed t-test when compared control with angiotensin II-treated wild-type mice.
Figure 4.- Differential gene expression patterns between control conditions and cardiac hypertrophy induced by different methods in mouse models.

A, Global gene expression patterns in wild-type (WT) or PKCζ-deficient (KO) mice chronically infused with angiotensin (AngII) or vehicle (PBS), were compared as indicated in Experimental Procedures section and in the text to those reported in three different transverse aortic constriction (TAC) experiments with their corresponding controls (SHAM), and in one group of mice over-expressing the AT1R versus non-transgenic controls. Groups of genes either over-expressed (Group I) or under-expressed (Group II) in hypertrophic versus control conditions were identified. Samples were grouped using hierarchical clustering analysis. Expression values are shown in colour code as log2, mean centered per gene (mean=0, SD=1). B, Enrichment analysis of functions overrepresented in differentially expressed genes. Shown are Gene Ontology biological processes (GOBP) terms that are significantly enriched in Group I genes (red bars) and Group II genes (green bars), as assessed by using DAVID web tool. Significance is shown as –log₁₀ of p-val.

Figure 5.- Alterations in gene expression related to the activation of the ERK5 signaling pathway differ in wild-type and PKCζ-deficient mice. A, Microarray data were analyzed using Pathway Studio to identify changes in the expression of genes functionally related to ERK5. Several genes that are part of the ERK5 signaling network were found up-regulated (red color) in angiotensin II-treated mice compared to PBS-treated mice or angiotensin II-treated PKCζ-deficient animals. Genes whose expression does not change are shown in grey. The interaction map shows reported positive (+) and negative (-) relationships between related proteins. Mapk7 (ERK5), jun (c-jun), Ets1 (ETS1), myc (c-Myc), Nppa (ANP, Atrial Natriuretic factor), Nppb (BNP, Brain type Natriuretic peptide), Colla2 (collagen type I, alpha 2), Ccna2 (cyclin A2), Creb1 (CREB, cAMP responsive element binding protein 1), Bcl2 (BCL2). B, Immunohistochemical analysis with a specific antibody shows the over-expression of Ets-1 in heart sections from angiotensin II-treated wild-type but not PKCζ-deficient animals. Staining intensity was quantified and plotted as in Fig.3. C-E Quantitative RT-PCR analysis in heart tissue showing enhanced mRNA expression of Nppa, Colla2, Mapk7 in angiotensin II-treated wild-type mice compared to angiotensin II-treated PKCζ/-/- mice. Data are mean ± SE of 3 independent experiments. *p<0.05,**p<0.01, two tailed t-test when compared to untreated animals.

Figure 6.- Analysis of hypertrophic markers in wild-type and PKCζ deficient mice upon chronic Angiotensin infusion.

PKCζ-deficient mice (PKCζ -/-) and matched wild-type (WT) control littermates were subjected to chronic angiotensin II infusion (or phosphate-buffered saline, PBS, as a control vehicle) for 14 days using osmotic minipumps as in previous figures. A, Circulating plasma levels of the hypertrophic marker atrial natriuretic peptide (ANP) were determined, as detailed in Experimental Procedures. Heart to body weight (B, left panel) or to tibia length ratios (B, right panel) were also calculated. C, In vivo electrocardiographic analysis indicates a significant increase in the duration of QRS and QT components (what has been shown to correlate with cardiac hypertrophy) in angiotensin versus PBS-treated wild-type animals. PBS-treated PKCζ-deficient mice display parameters similar to PBS-treated wt mice, but angiotensin fails to promote an increase in QRS and QT components duration in this PKCζ knockout model, as in wild-type animals. HR, heart rate; bpm, beats per min; ms, millisecond. Data in bar diagrams are expressed as mean ± SE of 4 animals in each group. * p < 0.05, ***p<0.001 (two-tailed Student t-test) compared to PBS-treated animals.
Figure 1

García-Hoz et al.
García-Hoz et al.

Figure 2
García-Hoz et al. (Figure 3)
Figure 4

A

B

-\log_{10}(p-val)

Cell adhesion
Phosphate transport
Cytoskeleton organization and biogenesis
Anatomical structure development
Actin filament-based process
Localization of cell
Cell motility
Cell cycle
Developmental process
Regulation of biological quality
Cell morphogenesis
Response to external stimulus
Vascular development
Angiogenesis
Cofactor metabolic process
Coenzyme metabolic process
Acetyl-CoA metabolic process
Fatty acid metabolic process
Cellular respiration
Acetyl-CoA catabolic process
Aerobic respiration
Coenzyme catabolic process
Tricarboxylic acid cycle
Cellular lipid metabolic process
Uniquinone metabolic process
Quinone cofactor metabolic process
Electron transport

García-Hoz et al.