A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes

Biblos-e Archivo/Manakin Repository

Show simple item record

dc.contributor.author Chacón, E.
dc.contributor.author Tarazona, P.
dc.contributor.author Bresme, F.
dc.contributor.other UAM. Departamento de Física Teórica de la Materia Condensada es_ES
dc.date.accessioned 2017-01-20T08:50:21Z
dc.date.available 2017-01-20T08:50:21Z
dc.date.issued 2015-07-21
dc.identifier.citation Journal of Chemical Physics 143.3 (2016): 034706 en_US
dc.identifier.issn 0021-9606 (print) es_ES
dc.identifier.uri http://hdl.handle.net/10486/676448
dc.description.abstract We present a new computational approach to quantify the area per lipid and the area compressibility modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139, 094902 (2013)], which provides excellent estimates of the bending modulus of model membranes. Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermodynamically consistent. This new area definition makes it possible to accurately estimate the area of the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospholipid protrusions. We find that the area per phospholipid and the area compressibility modulus features a negligible dependence with system size, making possible their computation using truly small bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis of the CU area fluctuations is fully consistent with the Hooke's law route. Unlike existing methods, our approach relies on a single simulation, and no a priori knowledge of the bending modulus is required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility modulus obtained with our method and the MARTINI forcefield are consistent with previous studies of these bilayers en_US
dc.description.sponsorship We acknowledge the support of the Spanish Ministry of Science and Innovation (Grant Nos. FIS2010-22047-C05 and FIS2013-47350-C5). We would also like to acknowledge the Imperial College High Performance Computing Service for providing computational resources. F.B. would like to thank the EPSRC (No. EP/J003859/1) for the award of a Leadership Fellowship en_US
dc.format.extent 11 pag. en
dc.format.mimetype application/pdf en
dc.language.iso eng en
dc.publisher American Institute of Physics Publising LLC en_US
dc.relation.ispartof Journal of Chemical Physics en_US
dc.rights © 2015 AIP Publishing LLC en_US
dc.title A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes en_US
dc.type article en
dc.subject.eciencia Física es_ES
dc.date.embargoend 2016-07-21
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4926938 es_ES
dc.identifier.doi 10.1063/1.4926938 es_ES
dc.identifier.publicationfirstpage 034706 es_ES
dc.identifier.publicationissue 3 es_ES
dc.identifier.publicationlastpage 034706 es_ES
dc.identifier.publicationvolume 143 es_ES
dc.relation.projectID Gobierno de España. FIS2010-22047-C05 es_ES
dc.relation.projectID Gobierno de España. FIS2013-47350-C5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion en
dc.rights.accessRights openAccess en

Files in this item


This item appears in the following Collection(s)

Show simple item record