Plasmonic Nanocavities Enable Self-Induced Electrostatic Catalysis

Biblos-e Archivo/Manakin Repository

Show simple item record

dc.contributor.author Climent, Clàudia
dc.contributor.author Galego, Javier
dc.contributor.author Garcia-Vidal, Francisco J.
dc.contributor.author Feist, Johannes
dc.contributor.other UAM. Departamento de Física Teórica de la Materia Condensada es_ES
dc.date.accessioned 2019-08-21T10:18:39Z
dc.date.available 2019-08-21T10:18:39Z
dc.date.issued 2019-06-13
dc.identifier.citation Angewandte Chemie - International Edition 58.26 (2019): 8698-8702 en_US
dc.identifier.issn 1433-7851 (print) en_US
dc.identifier.issn 1521-3773 (online) en_US
dc.identifier.uri http://hdl.handle.net/10486/688400
dc.description.abstract The potential of strong interactions between light and matter remains to be further explored within a chemical context. Towards this end herein we study the electromagnetic interaction between molecules and plasmonic nanocavities. By means of electronic structure calculations, we show that self-induced catalysis emerges without any external stimuli through the interaction of the molecular permanent and fluctuating dipole moments with the plasmonic cavity modes. We also exploit this scheme to modify the transition temperature T1/2 of spin-crossover complexes as an example of how strong light–matter interactions can ultimately be used to control a materials responses en_US
dc.description.sponsorship This work has been funded by the European Research Council (ERC‐2016‐STG‐714870) and the Spanish MINECO under contract MAT2014‐53432‐C5‐5‐R and the “María de Maeztu” programme for Units of Excellence in R&D (MDM‐2014‐0377), as well as through a Ramón y Cajal grant (JF). We also acknowledge support by the QuantERA program of the European Commission with funding by the Spanish AEI through project PCI2018‐093145 en_US
dc.format.extent 6 pag. en_US
dc.format.mimetype application/pdf en
dc.language.iso eng en
dc.publisher Wiley-VCH Verlag en_US
dc.relation.ispartof Angewandte Chemie - International Edition en_US
dc.rights © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim en_US
dc.subject.other Spin crossover en_US
dc.subject.other Self-induced catalysis en_US
dc.subject.other Plasmonic nanocavity en_US
dc.subject.other Nucleophilic substitution en_US
dc.subject.other Heterogeneous catalysis en_US
dc.title Plasmonic Nanocavities Enable Self-Induced Electrostatic Catalysis en_US
dc.type article en
dc.subject.eciencia Física es_ES
dc.date.embargoend 2020-06-13
dc.relation.publisherversion https://doi.org/10.1002/anie.201901926 es_ES
dc.identifier.doi 10.1002/anie.201901926 es_ES
dc.identifier.publicationfirstpage 8698 es_ES
dc.identifier.publicationissue 26 es_ES
dc.identifier.publicationlastpage 8702 es_ES
dc.identifier.publicationvolume 58 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/714870/EU//MMUSCLES en_US
dc.relation.projectID Gobierno de España. MAT2014‐53432‐C5‐5‐R es_ES
dc.relation.projectID Gobierno de España. MDM‐2014‐0377 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/731473/EU//QuantERA en_US
dc.relation.projectID Gobierno de España. PCI2018‐093145 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion en
dc.rights.cc Reconocimiento – NoComercial – SinObraDerivada es_ES
dc.rights.accessRights openAccess en
dc.authorUAM Climent I Biescas, Claudia (279566)
dc.authorUAM García Vidal, Fco. José (259819)
dc.authorUAM Feist, Johannes Maximilian (264839)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record